Tetrahedron 64 (2008) 9280-9285

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Straightforward microwave-assisted synthesis of 2-thiazolines using Lawesson's reagent under solvent-free conditions

Julio A. Seijas*, M. Pilar Vázquez-Tato*, José Crecente-Campo

Dpto. Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Aptdo. 280, 27080-Lugo, Spain

A R T I C L E I N F O

Article history: Received 18 June 2008 Received in revised form 8 July 2008 Accepted 9 July 2008 Available online 15 July 2008

ABSTRACT

2-Thiazolines are synthesized from carboxylic acids and 1,2-aminoalcohols in the presence of Lawesson's reagent under solventless conditions. The developed method is valid for either substituted or unsubstituted aminoalcohols and a wide variety of aromatic, heteroaromatic and aliphatic carboxylic acids; thus it constitutes a general synthetic method for these kinds of compounds. The role of Lawesson's reagent is dual: to transform the 1,2-aminoalcohol into 1,2-aminothiol and to activate its reaction with the carboxylic acid leading to the formation of a thiazoline ring, all in one pot.

© 2008 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Thiazoline rings are found in a large number of biologically active natural products. Thus, some thiazoline derivatives present interesting activities, such as: anti-HIV,¹ anti-cancer,^{2–4} cell division inhibition,⁵ pheromone activity,⁶ metal binders,⁷ antibiotic^{8–10} and radioprotective.^{11,12} Furthermore, a thiazoline ring is a good directing group for ruthenium catalyzed carbonylation of aromatic rings¹³ and synthesis of chalcogenobenzenes.¹⁴ General methodologies for the synthesis of thiazolines include the coupling of imidates or esters with aminothiols,^{15–17} the cyclodehydration of hydroxy thioamides,^{2,18–21} the condensation of nitriles with mercaptoalcohols.^{22,23} They can also rely on the formation of an intermediate amide from carboxylic acid and aminoalcohols and its conversion into the corresponding thioamide (obtained by thionation using P₂S₅¹¹ or Lawesson's reagent^{24,25}), followed by cyclization to thiazoline. There have also been some reports on the use of microwaves to prepare a thiazoline ring, i.e., the irradiation of 2-aminoethanethiol with N-acylbenzotriazoles followed by the addition of thionyl chloride and a new irradiation step,²⁶ or the preparation of 2-arylthiazolines from aryl keto nitriles and cysteamine.²⁷ The fact that microwave-assisted organic synthesis (MAOS) is seldom used for 2-thiazolines is surprising since the use of MAOS in heterocyclic chemistry²⁸ has proven to be a useful tool, specially when solventless reactions are sought.²⁹⁻³⁴

Recently, our group has demonstrated the usefulness of Lawesson's reagent (LR) for activating carboxylic acids in the synthesis of benzoxazoles and benzothiazoles by irradiation with microwaves under solvent-free conditions.³⁰ The effective action of LR in this coupling prompted us to explore its use in the synthesis of a thiazoline ring. Earlier, Nishio²⁵ had demonstrated the possibility of converting (1,2)-*N*-acylamino alcohols into thiazolines in the presence of LR using conventional heating in the presence of toluene; however, this procedure requires the previous formation of the amide bond, which is not always a straightforward step from aminoalcohol and carboxylic acid.

2. Results and discussion

Hence, in this paper the possibility of activating the formation of the amide bond between carboxylic acid and 1,2-aminoalcohol using LR under solventless conditions is studied. Furthermore, LR can act as a thionating agent and allows for the replacement of the hydroxyl by the thiol group, leading to a 2-thiazoline ring in a one-pot conversion.

As a model, the reaction of benzoic acid (**1a**) and 2-aminoethanol (**2**) was used to study the conditions necessary to carry out the transformation (Scheme 1). So, benzoic acid, aminoalcohol **2** and LR (molar ratio 1:1.5:0.5, respectively) were irradiated with microwaves at 190 °C for 4 min (the same conditions used for the synthesis of benzoazoles³⁰). This yielded 2-thiazoline **5a** in 60%, as well as the presence of several by-products. In order to improve the yield, different times, temperatures and reagent ratios were studied. We found that the best conditions are: irradiation for 8 min of a mixture 1:1.5:0.75 of the above mentioned reagents, at 150 °C/ 300 W. This yields 80% of the 2-thiazoline **5a**. Lower temperatures lead to a considerable amount of unreacted starting materials.

These reaction conditions were applied to a variety of substitution patterns for the benzoic acids (electron-donating and

^{*} Corresponding authors. Tel.: +34 982285900; fax: +34 982285872.

E-mail addresses: julioa.seijas@usc.es (J.A. Seijas), pilar.vazquez.tato@usc.es (M.P. Vázquez-Tato).

^{0040-4020/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.07.027

т

Scheme 1.

withdrawing groups in the aromatic ring) and for the aminoalcohols (**2**, **3** and **4**, Scheme 1). For 2-aminoethanol (**2**), the presence of an electron-donating group (methoxy or methyl substituents) in the ring of the acid gave similar yields as for unsubstituted benzoic acid (Table 1, entries 2 and 3). It is noteworthy that for acid **1d**, the 2-thiazoline obtained is mainly the 2-demethylated compound (53%), due to demethylation in the hindered *ortho*-position (Table 1, entry 4). Similar behaviour has been observed in previous reactions with LR.^{30,35} Also the condensated aromatic acid 2-naphthoic acid gave 83% of 2-thiazoline **5e** (Table 1, entry 5). Meanwhile, the presence of halogen atoms slightly reduced the yields to 60 and 57%, respectively (Table 1, entries 6 and 7).

The reaction is also compatible with heteroaromatic acids, so pyridyl, furyl and thienyl derivatives gave 50–63% yields (Table 1, entries 8–10). Even this conversion is applicable to non-conjugated carboxylic acids such as phenylacetic acid, which yielded 72% of 2-thiazoline **5k** (Table 1, entry 11). Aliphatic acids like heptanoic and decanoic acids led to the corresponding 2-thiazolines in 86% yield (Table 1, entries 12 and 13). It is even possible to obtain a bisthiazoline (**5n**) in 61% yield from a dicarboxylic acid like azelaic acid (Table 1, entry 14).

The positive results obtained with these reaction conditions were checked with substituted 1,2-aminoalcohols to verify its wide application, since most of previously described methods for the synthesis of 2-thiazolines reduce their examples to benzoic acids and unsubstituted aminoalcohol **2**. Thus, the reactivity of 2-amino-2-methyl-1-propanol (**3**) with the same carboxylic acids studied above gave similar results (Table 2), yet the reaction required a shorter time (4 min).⁴⁰ However, lower yields were obtained for halogenated benzoic acids (Table 2, entries 6 and 7).

The irradiation of carboxylic acids with LR in the presence of 2-amino-1-phenylethanol (**4**) led to 2-thiazolines **7a–n** in lower yields (Table 3). This is probably due to the presence of the phenyl group in 1,2-aminoalcohol, which induces the aromatization of the

Table 1

Synthesis of 2-thiazolines from 2-aminoetha	ıol	(2)
---	-----	----	---

Entry	Acid	R ¹	Product	Yield %
1	1a	Ph	5a ³⁶	80
2	1b	3-MeC ₆ H ₄	5b ²⁷	86
3	1c	4-MeOC ₆ H ₄	5c ²⁷	79
4	1d	2,3-(MeO) ₂ C ₆ H ₃	5d (R ¹ =2-HO-3-MeOC ₆ H ₃)	53 ^a
5	1e	2-Naphthyl	5e ³⁷	83
6	1f	4-ClC ₆ H ₄	5 f ³⁸	60
7	1g	4-BrC ₆ H ₄	5g ¹¹	57
8	1h	3-Pyridyl	5h ²³	61
9	1i	2-Thienyl	5i ²³	63
10	1j	2-Furyl	5j ³⁸	50
11	1k	C ₆ H ₄ CH ₂	5k ³⁸	72
12	11	$CH_3(CH_2)_5$	51	86
13	1m	CH ₃ (CH ₂) ₈	5m ³⁹	86
14	1n	HOOC(CH ₂) ₇	5n (Bis-thiazoline) ^b	61

Reactions were heated at $150 \circ C$ for 8 min, except for entry 8 (4 min). All yields are for isolated product with previous purification by flash chromatography.

^a Non-demethylated compound in the hindered *ortho*-position was obtained in 8% yield.

^b Reagents ratio: dicarboxylic acid/2-aminoethanol/LR is 1:3:1.5.

Synthesis of 2-thiazolines from 2-amino-2-methyl-1-propanol (3)

Entry	Acid	R ¹	Product	Yield %
1	1a	Ph	6a ⁴¹	77
2	1b	3-MeC ₆ H ₄	6b	71
3	1c	4-MeOC ₆ H ₄	6c ⁴²	70
4	1d	2,3-(MeO) ₂ C ₆ H ₃	6d (R ¹ =2-HO-3-MeOC ₆ H ₃)	67 ^a
5	1e	2-Naphthyl	6e	76
6	1f	4-ClC ₆ H ₄	6f	22
7	1g	4-BrC ₆ H ₄	6g	22
8	1h	3-Pyridyl	6h	77
9	1i	2-Thienyl	6i	72
10	1j	2-Furyl	6j	73
11	1k	C ₆ H ₄ CH ₂	6k ⁴³	81
12	11	$CH_3(CH_2)_5$	61	82
13	1m	CH ₃ (CH ₂) ₈	6m	61
14	1n	HOOC(CH ₂) ₇	6n (Bis-thiazoline) ^b	40

Reactions were heated at 150 °C for 4 min. All yields are for isolated product with previous purification by flash chromatography.

^a Non-demethylated compound in the hindered *ortho*-position was obtained in 7% yield.

^b Reagents ratio: dicarboxylic acid/2-amino-2-methyl-1-propanol/LR is 1:3:1.5.

five-membered ring and gives thiazoles **8e-i** as by-products (Table 3, entries 5–9). These oxidation compounds were produced in small amounts, lower than 20%.

As for the reaction mechanism, it can proceed through the activation of the carboxylic acid by LR, as previously described,⁴⁵ to promote the formation of the amide. Then, after replacement of the hydroxyl by a thiol group it could cyclize to 2-thiazoline in the presence of LR as was suggested by Nishio.²⁵ A similar mechanism was postulated by Metzger in the formation of 2-thiazolines from hydroxyamides with P_4S_{10} .⁴⁶ However, we found that when a mixture of benzoic acid and LR was irradiated, and then aminoalcohol 3 was added and irradiated again, it led to a complex mixture of reaction products. On the contrary, the irradiation of aminoalcohol 3 together with LR for 1 min, followed by the addition of benzoic acid and irradiation at 150 °C for 4 min yielded 73% of 2-thiazoline 6a. This suggests a first step where the LR acts as a thionating agent to exchange the hydroxyl for a thiol group (9). Then, an activated species must be formed, which favours the reaction with carboxylic acids, has been proposed in the synthesis of benzoxazoles and benzothiazoles from 2-aminophenol and 2-aminothiophenol, respectively.³⁰ In fact, when the aminoalcohol 3 was irradiated with LR an 1,3,2-thiazaphospholidine-2-methoxyphenyl-2-sulfide (10) was isolated and this was transformed, upon irradiation with benzoic acid, into a 2-thiazoline 6a in good

Table 3	
Synthesis of 2-thiazolines from 2-amino-1-phenylethanol (4)	

Entry	Acid	R ¹	Product	Yield % ^a
1	1a	Ph	7a ⁴⁴	69
2	1b	3-MeC ₆ H ₄	7b	71
3	1c	4-MeOC ₆ H ₄	7c	66
4	1d	2,3-(MeO) ₂ C ₆ H ₃	7d (R ¹ =2-HO-3-MeOC ₆ H ₃)	47 ^b
5	1e	2-Naphthyl	7e (+8e)	52 (14)
6	1f	4-ClC ₆ H ₄	7f (+ 8f)	38 (7)
7	1g	4-BrC ₆ H ₄	7g (+ 8g)	33 (13)
8	1h	3-Pyridyl	7h (+8h)	21 (20)
9	1i	2-Thienyl	7i ²⁵ (+8i)	44 (13)
10	1j	2-Furyl	7j ²⁵	42
11	1k	C ₆ H ₄ CH ₂	7k ²⁵	40
12	11	$CH_3(CH_2)_5$	71	62
13	1m	CH ₃ (CH ₂) ₈	7m	64
14	1n	HOOC(CH ₂) ₇	7n (Bis-thiazoline) ^c	28

Reactions were heated at 150 $^\circ \rm C$ for 8 min. All yields are for isolated product with previous purification by flash chromatography.

^a Yields in brackets correspond to by-products shown in column 4.

^b Non-demethylated compound in the hindered *ortho*-position was obtained in 8% yield.

^c Reagents ratio: dicarboxylic acid/2-amino-1-phenylethanol/LR is 1:3:1.5.

yield (Scheme 2). However, it is noticeable that in the previously described reaction of 1,2-aminoalcohols with LR heating under conventional conditions (reflux in xylene), no replacement of the hydroxyl group by a thiol takes place; this leads to 1,3,2-oxaza-phospholidines-2-sulfides.⁴⁷

3. Conclusion

In summary, a new, simple, fast, efficient and versatile method for the synthesis of 2-thiazolines from 1.2-aminoalcohols and carboxylic acid employing Lawesson's reagent is presented. In this solvent-free procedure, the LR has two roles, to transform the 1.2aminoalcohol into the 1.2-aminothiol and, to bring about a reaction with the carboxylic acid leading to the formation of 2-thiazoline ring. All these transformations are carried out in a one-pot reaction. The method is competitive with previous ones, both with conventional or microwave heating, since it leads to good yields and requires shorter reaction times. Moreover, it has a wider range of examples than the previously described synthesis both for the kind of carboxylic acids (aromatic and aliphatic) and 1,2-aminoalcohols used. In fact, 42 2-thiazolines were synthesized of which 24 had not been previously prepared. The process can also be used for parallelsynthesis of 2-thiazolines since the reaction conditions (reaction time, power setting and temperature) for each kind of 1,2-aminoalcohol are similar.

4. Experimental

4.1. General methods

Melting points were measured in open capillaries and are uncorrected. ¹H NMR spectra were recorded at 300 MHz (¹H) and 75 MHz (¹³C) in CDCl₃. Mass spectra were recorded in a low-resolution spectrometer. Infrared spectra were measured on FTIR instrument (cm⁻¹). The reactions were irradiated in an open vessel with microwaves in a monomode oven Discover CEM.

4.2. General procedure

Synthesis of 4,4-dimethyl-2-phenyl-2-thiazoline (**6a**). A mixture of benzoic acid (**1a**) (122 mg, 1 mmol), 2-amino-2-methyl-1-propanol (**3**) (133 mg, 1.5 mmol) and Lawesson's reagent (303 mg, 0.75 mmol) was irradiated in an open vessel with microwaves in a monomode oven (Discover CEM, 300 W and temperature control set at 150 °C measured with an IR sensor) for 4 min. The crude was dissolved in dichloromethane (30 mL) and washed with 10% aq NaOH (3×15 mL), dried (Na₂SO₄) and evaporated to give 4,4-dimethyl-2-phenyl-2-thiazoline (**6a**) pure as per NMR, further purification by flash chromatography (AcOEt/hexane, 5:95) gave 147 mg (77%), as an oil.

4.3. Data of previously unreported compounds

4.3.1. 2-(2-Hydroxy-3-methoxyphenyl)-2-thiazoline (5d)

Mp 74–74.5 °C (hexane). ¹H NMR δ 3.32 (t, 2H, *J*=8.4 Hz, CH₂S), 3.88 (s, 3H, OCH₃), 4.45 (t, 2H, *J*=8.4 Hz, CH₂N), 6.78 (t, 1H, *J*=7.9 Hz, ArH), 6.93 (dd, 1H, *J*=8.2, 1.6 Hz, ArH), 7.03 (dd, 1H, *J*=7.9, 1.3 Hz, Ar–H). ¹³C NMR δ 32.1 (SCH₂), 56.5 (OCH₃), 63.5 (NCH₂), 114.9, 116.7, 118.3, 122.5 (C_{Ar}), 148.7 (C–OH), 149.8 (C–OCH₃), 172.8 (C=N). IR (KBr, film): 2949, 2843, 1599 (C=N), 1468, 1257, 1013, 781, 731 cm⁻¹. MS (EI): *m/z* (%) 210 (M⁺+1, 40), 209 (M⁺, 100), 181 (49), 180 (32), 166 (38), 153 (85), 149 (47), 148 (41), 131 (49), 121 (29), 106 (33), 61 (52). Anal. Calcd for C₁₀H₁₁NO₂S: C, 57.39; H, 5.30; N, 6.69; S, 15.32. Found: C, 57.43; H, 5.57; N, 6.47; S, 14.89.

4.3.2. 2-Hexyl-2-thiazoline (51)

Oil. ¹H NMR δ 0.87 (t, 3H, *J*=6.6 Hz, CH₃), 1.23–1.40 (m, 6H, 3×CH₂), 1.63 (quint, 6H, *J*=4.8 Hz, CH₂), 250 (tt, 2H, *J*=7.9 and 1.8 Hz, CH₂C=N), 3.26 (t, 2H, *J*=8.4 Hz, CH₂S), 4.20 (t, 2H, *J*=8.4 Hz, CH₂N). ¹³C NMR δ 14.2 (CH₃), 22.7, 27.7, 29.0, 31.7, 33.9, 34.6 (CH₂), 64.7 (NCH₂), 172.2 (C=N). MS (EI): *m/z* (%) 171 (M⁺, 5), 129 (13), 114 (24), 101 (100), 61 (20), 60 (64), 59 (22), 55 (14). IR (KBr, film): 2925, 2855, 1629 (C=N), 1455, 1194, 1150, 973, 674 cm⁻¹. Anal. Calcd for C₉H₁₇NS: C, 63.10; H, 10.00; N, 8.18; S, 18.72. Found: C, 63.24; H, 10.04; N, 7.99; S, 18.76.

4.3.3. 1,7-Bis(4,5-dihydrothiazol-2-yl)heptane (**5n**)

Oil. ¹H NMR δ 1.21–1.36 (m, 6H, $3 \times CH_2$), 1.58 (quint, 4H, J=7.4 Hz, $2 \times CH_2$), 2.45 (tt, 4H, J=7.9, 1.3 Hz, $2 \times CH_2C=N$), 3.23 (t, 4H, J=8.4 Hz, $2 \times CH_2S$), 4.20 (tt, 4H, J=8.4, 1.3 Hz, $2 \times CH_2N$). ¹³C NMR δ 27.6, 29.11, 29.13, 33.9, 34.5 (CH₂), 64.7 (NCH₂), 171.9 (C=N). IR (KBr, film): 3300, 2928, 2854, 1639 (C=N), 1547, 1439, 1196, 984 cm⁻¹. MS (EI): m/z (%) 271 (M⁺+1, 30), 270 (M⁺, 21), 269 (M⁺–1, 58), 237 (44), 211 (50), 209 (52), 172 (50), 170 (64), 114 (75), 101 (100), 61 (50), 60 (64). Anal. Calcd for C₁₃H₂₂N₂S₂: C, 57.73; H, 8.20; N, 10.36; S, 23.71. Found: C, 57.93; H, 8.50; N, 10.51; S, 23.73.

4.3.4. 4,4-Dimethyl-2-(3-methylphenyl)-2-thiazoline (6b)

Oil. ¹H NMR δ 1.47 (s, 6H, 2×CH₃), 2.38 (s, 3H, Ar–CH₃), 3.20 (s, 2H, CH₂S), 7.25–7.30 (m, 2H, ArH), 7.60 (dt, 1H, *J*=7.0, 1.3 Hz, ArH), 7.67 (d, 1H, *J*=0.9 Hz, ArH). ¹³C NMR δ 21.5 (ArCH₃), 27.8 (2×CH₃), 45.2 (SCH₂), 79.0 (*C*–(CH₃)₂), 125.9, 128.5, 128.9, 132.0, 133.7, 138.4 (C_{Ar}), 164.6 (C=N). IR (KBr, film): 2966, 2923, 1596 (C=N), 1582, 1460, 1359, 1274, 1160, 955, 893, 787, 693 cm⁻¹. MS (EI): *m/z* (%) 206 (M⁺+1, 34), 205 (M⁺, 49), 190 (M⁺–CH₃, 100), 159 (36), 118 (66), 88 (95, SCH₂CH(CH₃)[±]), 84 (57), 55 (47), 51 (49). Anal. Calcd for C₁₂H₁₅NOS: C, 70.20; H, 7.36; N, 6.82; S, 15.62. Found: C, 70.49; H, 7.02; N, 6.50; S, 15.42.

4.3.5. 2-(2-Hydroxy-3-methoxyphenyl)-4,4-dimethyl-2thiazoline (**6d**)

Mp 106–108 °C (hexane). ¹H NMR δ 1.46 (s, 6H, 2×CH₃), 3.13 (s, 2H, CH₂S), 3.87 (s, 3H, OCH₃), 6.77 (t, 1H, *J*=7.9 Hz, ArH), 6.93 (dd, 1H, *J*=7.9, 1.3 Hz, ArH), 7.00 (dd, 1H, *J*=7.9, 1.8 Hz, ArH). ¹³C NMR δ 27.9 (2×CH₃), 43.5 (SCH₂), 56.5 (OCH₃), 78.0 (C–(CH₃)₂), 115.0, 116.7, 118.3, 122.1 (C_{Ar}), 148.7 (C–OH), 150.0 (C–OCH₃), 168.6 (C=N). IR (KBr, film): 2964, 2928, 1593 (C=N), 1566, 1462, 1256, 1173, 999, 735 cm⁻¹. MS (EI): *m/z* (%) 238 (M⁺+1, 26), 237 (M⁺, 93), 181 (37), 165 (49), 153 (62), 150 (44), 149 (100), 88 (28), 71 (49), 57 (60), 55 (75). Anal. Calcd for C₁₂H₁₅NO₂S: C, 60.73; H, 6.37; N, 5.90; S, 13.51. Found: C, 61.04; H, 6.60; N, 5.83; S, 13.88.

4.3.6. 4,4-Dimethyl-2-naphthyl-2-thiazoline (6e)

Mp 51–53 °C. ¹H NMR δ 1.52 (s, 6H, 2×CH₃), 3.27 (s, 2H, CH₂S), 7.48–7.55 (m, 2H, ArH), 7.83–7.92 (m, 3H, ArH), 7.99 (dd, 1H, *J*=8.4, 1.8 Hz, ArH), 8.26 (d, 1H, *J*=1.3 Hz, ArH). ¹³C NMR δ 27.8 (2×CH₃), 45.3 (SCH₂), 79.2 (C–(CH₃)₂), 125.2, 126.7, 127.5, 127.9, 128.3, 129.0, 129.1, 131.3, 133.1, 134.9 (C_{Ar}), 164.3 (C=N). IR (KBr, film): 2968, 2928, 1607, 1277, 1169, 928, 822, 748 cm⁻¹. MS (EI): m/z (%) 242 (M⁺+1, 5), 241 (M⁺, 29), 226 (M⁺-CH₃, 23), 154 (35), 153 (100), 127 (21), 126 (17), 88 (40, SCH₂CH(CH₃) $^{\pm}_{2}$), 73 (15), 55 (28). Anal. Calcd for C₁₅H₁₅NS: C, 74.65; H, 6.26; N, 5.80; S, 13.29. Found: C, 74.41; H, 6.69; N, 5.67; S, 13.21.

4.3.7. 2-(4-Chlorophenyl)-4,4-dimethyl-2-thiazoline (6f)

¹H NMR δ 1.46 (s, 6H, 2×CH₃), 3.22 (s, 2H, CH₂S), 7.36 (d, 2H, J=8.4 Hz, ArH), 7.74 (d, 2H, J=8.4 Hz, ArH). ¹³C NMR δ 27.7 (2×CH₃), 45.5 (SCH₂), 79.2 (C-(CH₃)₂), 128.8, 129.8, 132.3, 137.3 (C_{Ar}), 163.3 (C=N). IR (KBr, film): 2967, 2923, 1604 (C=N), 1488, 1399, 1264, 1169, 1088, 945, 832, 610 cm⁻¹. MS (EI): m/z (%) 227 (³⁷Cl-M⁺, 26), 226 (13), 225 (³⁵Cl-M⁺, 64), 210 (83), 179 (52), 138 (59), 88 (100, SCH₂CH(CH₃)¹/₂), 73 (51), 55 (60), 54 (53). Anal. Calcd for C₁₁H₁₂ClNS: C, 58.53; H, 5.36; N, 6.20; S, 14.20. Found: C, 58.87; H, 5.12; N, 6.49; S, 14.19.

4.3.8. 2-(4-Bromophenyl)-4,4-dimethyl-2-thiazoline (6g)

Oil. ¹H NMR δ 1.46 (s, 6H, 2×CH₃), 3.22 (s, 2H, CH₂S), 7.52 (d, 2H, J=8.8 Hz, ArH), 7.68 (d, 2H, J=8.4 Hz, ArH). ¹³C NMR δ 27.7 (2×CH₃), 45.4 (SCH₂), 79.2 (C-(CH₃)₂), 125.7, 130.0, 131.8, 133.6 (C_{Ar}), 161.6 (C=N). MS (EI): m/z (%) 271 (⁸¹Br-M⁺, 30), 270 (12), 269 (⁷⁹Br-M⁺, 38), 256 (47), 254 (54), 225 (22), 223 (24), 184 (23), 182 (28), 102 (46), 88 (100, SCH₂CH(CH₃)₂), 73 (30), 55 (54), 54 (45). IR (KBr, film): 2955, 2924, 2854, 1736, 1605 (C=N), 1589, 1462, 1263, 1070, 1013, 949 cm⁻¹. Anal. Calcd for C₁₁H₁₂BrNS: C, 48.90; H, 4.48; N, 5.18; S, 11.87. Found: C, 49.12; H, 4.35; N, 5.18; S, 12.01.

4.3.9. 4,4-Dimethyl-2-(3-pyridyl)-2-thiazoline (**6h**)

Oil. ¹H NMR δ 1.42 (s, 6H, 2×CH₃), 3.19 (s, 2H, CH₂S), 7.27 (ddd, 1H, *J*=7.9, 4.8, 0.9 Hz, ArH), 8.03 (ddd, 1H, *J*=7.9, 2.2, 1.8 Hz, ArH), 8.60 (dd, 1H, *J*=4.8, 1.3 Hz, ArH), 8.96 (d, 1H, *J*=1.8 Hz, ArH). ¹³C NMR δ 27.6 (2×CH₃), 45.4 (SCH₂), 79.2 (C-(CH₃)₂), 123.4, 129.7, 135.6, 149.6, 151.8 (C_{Ar}), 161.6 (C=N). IR (KBr, film): 2968, 2928, 1607 (C=N), 1416, 1269, 1173, 945, 810, 704, 623 cm⁻¹. MS (EI): *m/z* (%) 192 (M⁺, 10), 177 (M⁺-CH₃, 8), 105 (29), 88 (33, SCH₂CH(CH₃)[±]), 73 (13), 58 (100), 54 (14). Anal. Calcd for C₁₀H₁₂N₂S: C, 62.46; H, 6.29; N, 14.57; S, 16.68. Found: C, 62.40; H, 6.25; N, 14.29; S, 16.30.

4.3.10. 4,4-Dimethyl-2-(2-thienyl)-2-thiazoline (6i)

Oil. ¹H NMR δ 1.44 (s, 6H, 2×CH₃), 3.22 (s, 2H, CH₂S), 7.03 (t, 1H, *J*=4.4 Hz, ArH), 7.40 (d, 2H, *J*=4.4 Hz, ArH). ¹³C NMR δ 27.6 (2×CH₃), 45.9 (SCH₂), 78.8 (C–(CH₃)₂), 127.5, 129.5, 130.4, 137.6 (C_{Ar}), 157.3 (C=N). IR (KBr, film): 2926, 2854, 1601 (C=N), 1462, 1362, 1261, 1041, 710 cm⁻¹. MS (EI): *m/z* (%) 197 (M⁺, 35), 182 (M⁺–CH₃, 100), 151 (39), 110 (77), 88 (SCH₂CH(CH₃)[†]₂, 67), 73 (56), 55 (99). Anal. Calcd for C₉H₁₁NS₂: C, 54.78; H, 5.62; N, 7.10; S, 32.50. Found: C, 54.89; H, 5.62; N, 7.04; S, 32.07.

4.3.11. 2-(2-Furyl)-4,4-dimethyl-2-thiazoline (6j)

Oil. ¹H NMR δ 1.44 (s, 6H, 2×CH₃), 3.17 (s, 2H, CH₂S), 6.44 (dd, 1H, *J*=3.5, 1.8 Hz, ArH), 6.84 (dd, 1H, *J*=3.5, 0.9 Hz, ArH), 7.48 (dd, 1H, *J*=1.8, 0.9 Hz, ArH). ¹³C NMR δ 27.6 (2×CH₃), 45.0 (SCH₂), 78.9 (C-(CH₃)₂), 111.9, 113.9, 144.8, 148.2 (C_{Ar}), 154.0 (C=N). IR (KBr, film): 2968, 2928, 1611 (C=N), 1475, 1265, 969, 899, 749 cm⁻¹. MS (EI): *m/z* (%) 181 (M⁺, 34), 166 (M⁺-CH₃, 100), 135 (29), 94 (46), 73 (42), 55 (55). Anal. Calcd for C₉H₁₁NOS: C, 59.64; H, 6.12; N, 7.73; S, 17.69. Found: C, 59.53; H, 6.11; N, 7.50; S, 18.06.

4.3.12. 2-Hexyl-4,4-dimethyl-2-thiazoline (61)

Oil. ¹H NMR δ 0.81 (t, 3H, *J*=6.2 Hz, CH₃CH₂), 1.23–1.28 (br s, 12H, $3\times$ (CH₂), $2\times$ (CH₃)), 1.54 (quint, 6H, *J*=7.1 Hz, CH₂), 2.38 (t, 2H, *J*=8.4 Hz, CH₂C=N), 3.00 (s, 2H, SCH₂). ¹³C NMR (75 MHz, CDCl₃) δ 14.2 (CH₃CH₂), 22.7 (CH₂), 27.7 (2×CH₃), 27.8, 28.8, 31.6, 34.6 (CH₂), 45.4 (SCH₂), 78.2 (*C*-(CH₃)₂), 167.8 (C=N). IR (KBr, film):

2924, 2854, 1647 (C=N), 1543, 1462, 1379, 1259 cm⁻¹. MS (EI): m/z (%) 200 (M⁺+1, 17), 199 (M⁺, 8), 142 (31), 130 (31), 129 (100), 114 (25), 89 (23), 88 (89), 73 (26), 60 (33), 58 (38), 55 (72), 54 (64). Anal. Calcd for C₁₁H₂₁NS: C, 66.27; H, 10.62; N, 7.03; S, 16.08. Found: C, 66.69; H, 11.00; N, 7.01; S, 16.11.

4.3.13. 4,4-Dimethyl-2-nonyl-2-thiazoline (6m)

Oil. ¹H NMR δ 0.82 (t, 3H, *J*=6.8 Hz, CH₃CH₂), 1.21–1.29 (m, 18H, 6×(CH₂), 2×(CH₃)), 1.60 (quint, 2H, *J*=7.0 Hz, CH₂), 2.39 (t, 2H, *J*=7.7 Hz, CH₂C=N), 3.01 (s, 2H, SCH₂). ¹³C NMR δ 14.3 (CH₃CH₂), 22.8 (CH₂), 27.7 (2×CH₃), 27.9, 29.2, 29.4, 29.4, 29.6, 32.0, 34.6 (CH₂), 45.4 (SCH₂), 78.2 (C-(CH₃)₂), 167.8 (C=N). IR (KBr, film): 2926, 2854, 1649 (C=N), 1628, 1541, 1464, 1362, 1259, 895 cm⁻¹. MS (EI): *m/z* (%) 241 (M⁺, 14), 142 (42), 129 (100), 88 (SCH₂CH(CH₃)¹/₂, 89), 55 (65). Anal. Calcd for C₁₄H₂₇NS: C, 69.65; H, 11.27; N, 5.80; S, 13.28. Found: C, 69.96; H, 11.36; N, 5.63; S, 12.90.

4.3.14. 1,7-Bis(4,4-dimethyl-4,5-dihydrothiazol-2-yl)heptane (6n)

Oil. ¹H NMR δ 1.32–1.37 (m, 20H, 4×CH₂, 4×CH₃), 1.59 (quint, 4H, *J*=7.5 Hz, 2×CH₂), 2.42 (t, 4H, *J*=7.7 Hz, 2×CH₂C=N), 3.05 (s, 4H, 2×SCH₂). ¹³C NMR δ 27.8 (CH₃), 29.00, 29.05, 29.1, 29.2 34.6 (CH₂), 45.4 (SCH₂), 78.3 (C-(CH₃)₂), 167.7 (C=N). IR (KBr, film): 2966, 2928, 2856, 1626 (C=N), 1535, 1462, 1360, 1230, 1175, 1084, 955, 885 cm⁻¹. MS (EI): *m/z* (%) 326 (M⁺, 8), 311 (M⁺–CH₃, 100), 239 (50), 223 (46), 198 (65), 142 (40), 129 (95), 88 (88), 55 (76), 54 (49). Anal. Calcd for C₁₇H₃₀N₂S₂: C, 62.52; H, 9.26; N, 8.58; S, 19.64. Found: C, 62.45; H, 9.40; N, 8.29; S, 19.45.

4.3.15. 2-(3-Methylphenyl)-5-phenyl-2-thiazoline (7b)

Oil. ¹H NMR δ 2.42 (s, 3H, CH₃), 4.63 (dd, 1H, J_{gem} =15.8 Hz, J=5.7 Hz, NCH₂), 4.79 (dd, 1H, J_{gem} =16.3 Hz, J=8.8 Hz, NCH₂), 5.08 (dd, 1H, J=8.8, 5.7 Hz, CH), 7.26–7.39 (m, 7H, ArH), 7.70 (dt, 1H, J=7.0, 1.8 Hz, ArH), 7.76 (br s, 1H, ArH). ¹³C NMR δ 21.5 (CH₃), 54.8 (SCH), 73.5 (NCH₂), 126.0, 127.3, 128.0, 128.7, 129.1, 129.2, 132.3, 133.4, 138.6, 142.4 (Ar), 168.1 (C=N). IR (KBr, film): 3028, 2939, 2920, 1601 (C=N), 1583, 1495, 1485, 1454, 1313, 1261, 1022, 999, 789, 696 cm⁻¹. MS (EI): m/z (%) 254 (M⁺+1, 6), 253 (M⁺, 31), 136 (C₈H₈S⁺, 68), 135 (C₇H₅NS⁺, 76), 131 (C₉H₉N⁺, 100), 103 (18), 91 (49), 77 (26), 65 (21), 51 (15). Anal. Calcd for C₁₆H₁₅NS: C, 75.85; H, 5.97; N, 5.53; S, 12.66. Found: C, 75.88; H, 6.03; N, 5.50; S, 12.50.

4.3.16. 2-(4-Methoxyphenyl)-5-phenyl-2-thiazoline (7c)

Mp 83–84 °C (hexane). ¹H NMR δ 3.84 (s, 3H, OCH₃), 4.58 (dd, 1H, J_{gem} =15.8 Hz, J=5.7 Hz, NCH₂), 4.76 (dd, 1H, J_{gem} =15.8 Hz, J=8.8 Hz, NCH₂), 5.06 (dd, 1H, J=8.8, 5.7 Hz, CH), 6.94 (d, 2H, J=8.8 Hz, ArH), 7.27–7.38 (m, 5H, ArH), 7.84 (d, 2H, J=8.8 Hz, ArH). ¹³C NMR δ 54.9 (SCH), 55.6 (OCH₃), 73.3 (NCH₂), 114.1, 126.2, 127.3, 127.9, 129.1, 130.3, 142.4 (Ar), 162.3 (C–OCH₃), 167.2 (C=N). IR (KBr, film): 2999, 2937, 1607 (C=N), 1508, 1310, 1254, 1175, 1024, 1013, 849, 768, 702 cm⁻¹. MS (EI): m/z (%) 270 (M⁺+1, 8), 269 (M⁺, 44), 147 (C₉H₉NO⁺, 100), 136 (C₈H₈S⁺, 49), 135 (C₇H₅NS⁺, 50), 132 (20), 91 (18), 77 (24), 51 (8). Anal. Calcd for C₁₆H₁₅NOS: C, 71.34; H, 5.61; N, 5.20; S, 11.90. Found: C, 71.22; H, 5.44; N, 4.89; S, 11.76.

4.3.17. 2-(2-Hydroxy-3-methoxyphenyl)-5-phenyl-2thiazoline (**7d**)

Mp 109–111 °C (hexane/CH₂Cl₂). ¹H NMR δ 3.93 (s, 3H, OCH₃), 4.62 (dd, 1H, J_{gem} =15.8 Hz, J=5.7 Hz, NCH₂), 4.80 (dd, 1H, J_{gem} =15.8 Hz, J=8.8 Hz, NCH₂), 5.03 (dd, 1H, J=8.8, 5.7 Hz, CH), 6.82 (t, 1H, J=7.9 Hz, ArH), 6.98 (dd, 1H, J_{ortho} =8.4 Hz and J_{meta} =1.3 Hz, Ar–H), 7.06 (dd, 1H, J_{ortho} =7.9 Hz and J_{meta} =1.3 Hz, Ar–H), 7.26–7.36 (m, 5H, ArH). ¹³C NMR δ 53.1 (SCHPh), 56.5 (OCH₃), 71.4 (NCH₂), 115.0, 116.6, 118.5, 122.5, 127.3, 128.3, 129.2, 141.3(C_{Ar}), 148.8, 150.0 (C_{Ar}–O), 172.2 (*C*=N). IR (KBr, film): 2939, 2841, 1597 (*C*=N), 1464, 1256, 1088, 1022, 729, 700 cm⁻¹. MS (EI): m/z (%) 286 (M⁺+1, 14), 285 (M⁺, 70), 162 (35), 153 (64), 136 (C₈H₈S⁺, 42), 135 (C₇H₅NS⁺, 100), 121 (32), 104 (43), 103 (41), 91 (65), 78 (34), 77 (59), 65 (32), 51 (38). Anal. Calcd for $C_{16}H_{15}NO_2S$: C, 67.34; H, 5.30; N, 4.91; S, 11.24. Found: C, 67.26; H, 5.38; N, 4.93; S, 11.10.

4.3.18. 2-(2-Naphthyl)-5-phenyl-2-thiazoline (7e)

Mp 66–67 °C (hexane). ¹H NMR δ 4.68 (dd, 1H, J_{gem} =15.8 Hz, J=5.7 Hz, NCH₂), 4.85 (dd, 1H, J_{gem} =15.8 Hz, J=8.8 Hz, NCH₂), 5.14 (dd, 1H, J=8.8, 5.7 Hz, CH), 7.26–7.41 (m, 5H, ArH), 7.50–7.59 (m, 2H, ArH), 7.86–7.93 (m, 3H, ArH), 8.06 (dd, 1H, J=8.8, 1.8 Hz, ArH), 8.32 (d, 1H, J=1.3 Hz, ArH). ¹³C NMR δ 54.9 (SCHPh), 73.4 (NCH₂), 125.0, 126.9, 127.3, 127.8, 128.0, 128.1, 128.5, 129.1, 129.8, 133.1, 135.1, 142.2 (Ar_r), 168.3 (C=N). IR (KBr, film): 3059, 3028, 1607 (C=N), 1495, 1454, 1311, 1186, 1013, 928, 860, 822, 750, 698, 474 cm⁻¹. MS (EI): m/z (%) 290 (M⁺+1, 10), 289 (M⁺, 44), 167 (C₁₂H₉N⁺, 100), 153 (26) 136 (C₈H₈S⁺, 56), 135 (C₇H₅NS⁺, 55), 127 (45), 121 (18), 91 (21), 77 (23), 51 (11). Anal. Calcd for C₁₉H₁₅NS: C, 78.86; H, 5.22; N, 4.84; S, 11.08. Found: C, 78.56; H, 5.44; N, 4.87; S, 11.02.

4.3.19. 2-(4-Chlorophenyl)-5-phenyl-2-thiazoline (7f)

Mp 76–78 °C. ¹H NMR δ 4.60 (dd, 1H, J_{gem} =16.3 Hz, J=5.7 Hz, NCH₂), 4.78 (dd, 1H, J_{gem} =16.3 Hz, J=8.8 Hz, NCH₂), 5.10 (dd, 1H, J=8.8, 5.7 Hz, CH), 7.26–7.43 (m, 7H, ArH), 7.82 (d, 2H, J=8.4 Hz, ArH). ¹³C NMR δ 55.3 (SCHPh), 73.4 (NCH₂), 127.3, 128.1, 129.0, 129.1, 129.9, 131.9, 137.6, 142.0 (Ar), 166.8 (C=N). IR (KBr, film): 3063, 3030, 1599 (C=N), 1487, 1452, 1398, 1229, 1092, 1011, 972, 930, 831, 698 cm⁻¹. MS (EI): m/z (%) 275 (³⁷Cl–M⁺, 17), 274 (8), 273 (³⁵Cl–M⁺, 44), 151 (C₈H₆ClN⁺, 100), 136 (C₈H₈S⁺, 79), 135 (C₇H₅NS⁺, 84), 121 (18), 91 (23), 77 (22), 51 (13). Anal. Calcd for C₁₅H₁₂ClNs: C, 65.80; H, 4.42; N, 5.12; S, 11.71. Found: C, 66.22; H, 4.69; N, 5.07; S, 11.47.

4.3.20. 2-(4-Bromophenyl)-5-phenyl-2-thiazoline (7g)

Mp 88–89 °C (hexane). ¹H NMR δ 4.60 (dd, 1H, J_{gem} =16.3 Hz, J=5.7 Hz, NCH₂), 4.77 (dd, 1H, J_{gem} =16.3 Hz, J=8.8 Hz, NCH₂), 5.10 (dd, 1H, J=8.8, 5.7 Hz, CH), 7.26–7.36 (m, 5H, ArH), 7.56 (d, 2H, J=8.8 Hz, ArH), 7.74 (d, 2H, J=8.4 Hz, ArH). ¹³C NMR δ 55.3 (SCHPh), 73.5 (NCH₂), 126.0, 127.3, 128.1, 129.1, 130.1, 132.0, 132.4, 142.0 (Ar), 166.8 (C=N). IR (KBr, film): 1599 (C=N), 1583, 1481, 1452, 1393, 1223, 1068, 926, 825, 754, 694, 594 cm⁻¹. MS (EI): m/z (%) 319 (⁸¹Br-M⁺, 17), 317 (⁷⁹Br-M⁺, 18), 197 (56), 195 (57), 136 (C₈H₈S⁺, 100), 135 (C₇H₅NS⁺, 91), 121 (20), 103 (22), 102 (21), 91 (32), 77 (Ph⁺, 29), 51 (18). Anal. Calcd for C₁₅H₁₂BrNS: C, 56.61; H, 3.80; N, 4.40; S, 10.08. Found: C, 56.78; H, 3.45; N, 4.55; S, 9.90.

4.3.21. 5-Phenyl-2-(3-pyridyl)-2-thiazoline (7h)

Mp 132–133 °C (hexane/AcOEt). ¹H NMR δ 7.26–7.43 (m, 4H, ArH), 7.63 (d, 2H, *J*=7.0 Hz, ArH), 7.77 (dt, 1H, *J*=7.9, 1.3 Hz, ArH), 8.07 (s, 1H, NCH), 8.18 (d, 1H, *J*=7.9 Hz, ArH), 8.61 (d, 1H, *J*=4.4 Hz, ArH). ¹³C NMR δ 119.6, 124.5, 127.0, 128.7, 129.2, 131.8, 137.2 (Ar), 139.8 (NCH), 141.9, 149.7, 151.8 (Ar), 168.2 (C=N). IR (KBr, film): 1581 (C=N), 1470, 1446, 1421, 1001, 785, 756, 690 cm⁻¹. MS (EI): *m/z* (%) 239 (M⁺+1, 15), 238 (M⁺, 87), 134 (C₈H₆S⁺, 100), 135 (11), 108 (8), 102 (8), 90 (18), 89 (23), 78 (13), 77 (14), 51 (15). Anal. Calcd for C₁₄H₁₀N₂S: C, 70.56; H, 4.23; N, 11.76; S, 13.46. Found: C, 70.54; H, 4.11; N, 11.98; S, 13.60.

4.3.22. 2-Hexyl-5-phenyl-2-thiazoline (71)

Oil. ¹H NMR δ 0.90 (t, 3H, *J*=6.6 Hz, CH₃), 1.29–1.42 (m, 6H, 3×CH₂), 1.70 (sex, 2H, *J*=7.5 Hz, CH₂), 2.57 (tt, 2H, *J*=7.5, 1.6 Hz, CH₂CN), 4.35 (ddt, 1H, *J_{gem}*=15.4 Hz, *J*=5.7, 1.3 Hz, NCH₂C), 4.54 (ddt, 1H, *J_{gem}*=15.4 Hz, *J*=8.8, 1.8 Hz, NCH₂), 4.94 (dd, 1H, *J*=8.8, 5.7 Hz, NCH₂CH), 7.22–7.34 (m, 5H, ArH). ¹³C NMR δ 14.2 (CH₃), 22.7, 27.7, 29.0, 31.7, 34.6 (CH₂), 55.0 (SCH), 72.9 (NCH₂), 127.2, 127.8, 129.0, 142.6 (Ar), 171.5 (C=N). IR (KBr, film): 2954, 2928, 2856, 1649, 1632 (C=N), 1541, 1493, 1454, 972, 760, 698 cm⁻¹. MS (EI): *m/z* (%) 248 (M⁺+1, 4), 247 (M⁺, 20), 177 (100), 136 (C₈H₈S⁺, 37), 135 (C₇H₅NS⁺,

96), 124 (19), 104 (38), 103 (22), 91 (30), 77 (Ph⁺, 22), 55 (11). Anal. Calcd for $C_{15}H_{21}NS$: C, 72.82; H, 8.56; N, 5.66; S, 12.96. Found: C, 72.43; H, 9.03; N, 5.39; S, 12.77.

4.3.23. 2-Nonyl-5-phenyl-2-thiazoline (7m)

Oil. ¹H NMR δ 0.90 (t, 3H, *J*=6.8 Hz, CH₃), 1.29–1.42 (m, 12H, 6×CH₂), 1.71 (sex, 2H, *J*=7.9 Hz, CH₂), 2.57 (tt, 2H, *J*=7.7, 1.3 Hz, CH₂CN), 4.36 (ddt, 1H, *J_{gem}*=15.6 Hz, *J*=5.5, 1.3 Hz, NCH₂), 4.54 (ddt, 1H, *J_{gem}*=15.6 Hz, *J*=9.0, 1.3 Hz, NCH₂), 4.94 (dd, 1H, *J*=9.0, 5.5 Hz, CH), 7.22–7.34 (m, 5H, ArH). ¹³C NMR δ 14.3 (CH₃), 22.9, 29.4, 29.5, 29.5, 29.7, 32.1, 34.6 (CH₂), 55.1 (SCH), 73.0 (NCH₂), 127.2, 127.8, 129.0, 142.6 (Ar), 171.3 (C=N). IR (KBr, film): 2926, 2854, 1649 (C=N), 1632, 1543, 1493, 1454, 997, 760, 698 cm⁻¹. MS (EI): *m/z* (%) 289 (M⁺, 11), 177 (100), 172 (37), 136 (C₈H₈S⁺, 46), 135 (C₇H₅NS⁺, 87), 104 (53), 103 (34), 91 (45), 77 (Ph⁺, 31), 57 (28), 55 (46). Anal. Calcd for C₁₈H₂₇NS: C, 74.68; H, 9.40; N, 4.84; S, 11.08. Found: C, 74.47; H, 9.55; N, 4.67; S, 10.82.

4.3.24. 1,7-Bis(5-phenyl-4,5-dihydrothiazol-2-yl)heptane (7n)

Oil. ¹H NMR δ 1.40 (br s, 6H, 3×CH₂), 1.70 (br s, 4H, 2×CH₂), 2.56 (br t, 4H, *J*=7.5 Hz, 2×CH₂CN), 4.35 (dd, 2H, *J_{gem}*=15.4 Hz, *J*=5.3 Hz, 2×NCH₂), 4.54 (dd, 2H, *J_{gem}*=15.4 Hz, *J*=8.8 Hz, 2×NCH₂), 4.94 (dd, 2H, *J*=8.8 and 5.7 Hz, 2×CH), 7.29 (br s, 10H, ArH). ¹³C NMR δ 27.6, 29.1, 29.2, 34.5 (CH₂), 55.1 (SCH), 72.9 (NCH₂), 127.2, 127.8, 129.0, 142.6 (Ar), 171.3 (C=N). IR (KBr, film): 2928, 2854, 1647 (C=N), 1543, 1493, 1452, 1215, 760, 698 cm⁻¹. MS (EI): *m/z* (%) 423 (M⁺+1, 1), 305 (10), 271 (10), 174 (16), 134 (22), 123 (100), 120 (87), 119 (79), 118 (32), 104 (22), 102 (19), 91 (11). Anal. Calcd for C₂₅H₃₀N₂S₂: C, 71.04; H, 7.15; N, 6.63; S, 15.17. Found: C, 70.97; H, 7.43; N, 6.51; S, 15.02.

Acknowledgements

We acknowledge XUNTA DE GALICIA for financial support: PGIDIT05PXIB26201PR, PR405 A 098/59-0. USC for a predoctoral fellowship to J.C.-C, and to Dr. JoDee Anderson (financed by Xunta (2007/000145-0) and the FEDER) for her linguistic support. This work was undertaken as part of the EC sponsored programs D32 COST Program (Chemistry in High-Energy Microenvironments, WG10).

Supplementary data

¹H NMR spectra for all no previously synthesized compounds are provided. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2008.07.027.

References and notes

- 1. Pattenden, G.; Mulqueen, B.; Falck, J. Tetrahedron Lett. 1994, 35, 5705–5708.
- 2. Wipf, P.; Fritch, P. C. Tetrahedron Lett. 1994, 35, 5397-5400.
- 3. Pattenden, G.; Boden, C.; Ye, T. Synlett 1995, 417-419.
- Hawkins, C. J.; Lavin, M. F.; Marshall, K. A.; van den Brenk, A. L.; Watters, D. J. J. Med. Chem. 1990, 33, 1634–1638.
- 5. Lai, J.-H.; Yu, J.; Makennen, B.; Falck, J. Tetrahedron Lett. 1996, 37, 7167-7170.
- 6. Sharrow, S. D.; Novotny, M. V.; Stone, M. J. Biochemistry 2003, 42, 6302-6309.
- Morris, L. A.; Milne, B. F.; Jaspars, M.; Kettenes-van den Bosch, J. J.; Versluis, K.; Heck, A. J. R.; Kelly, S. M.; Price, N. C. *Tetrahedron* **2001**, *57*, 3199–3207.
- Fujimoto, H.; Kinoshita, T.; Suzuki, H.; Umezawa, H. J. Antibiot. 1970, 23, 271–275.
- 9. Pestka, S.; Brot, N. J. Biol. Chem. 1971, 246, 7715-7722.
- 10. Burns, D. J. W.; Cundliffe, E. Eur. J. Biochem. 1973, 37, 570-574.
- 11. Robbe, Y.; Fernandez, J. P.; Chapat, J. P.; Sentenac-Roumanou, H.; Fatome, M. *Eur. J. Med. Chem.* **1985**, *20*, 16–24.
- Terol, A.; Fernandez, J. P.; Robbe, Y.; Chapat, J. P.; Granger, R.; Fatome, M.; Andrieu, L.; Sentenac-Roumanou, H. Eur. J. Med. Chem. 1978, 13, 149–151.
- Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2000, 65, 1475–1488.
- 14. Christiaens, L.; Luxen, A.; Evers, M.; Thibaut, P.; Mbuyi, M.; Welter, A. Chem. Scr. 1984, 24, 178–184.
- 15. North, M.; Pattenden, G. Tetrahedron 1990, 46, 8267-8290.

- 16. Charette, A. B.; Chua, P. J. Org. Chem. 1998, 63, 908-909.
- Busacca, C. A.; Dong, Y.; Spinelli, E. M. Tetrahedron Lett. 1996, 37, 2935–2938. 17
- 18. Wenker, H. J. Am. Chem. Soc. 1935, 57, 1079-1080.
- 19. Nishio, T. Tetrahedron Lett. 1995, 36, 6113-6116.
- 20. Lafargue, P.; Guenot, P.; Lellouche, J.-P. Synlett 1995, 171-172.
- 21. Mahler, S. G.; Serra, G. L.; Antonow, D.; Manta, E. Tetrahedron Lett. 2001, 42, 8143-8146.
- 22. Meyers, A. I. J. Org. Chem. 1960, 25, 1147-1151.
- Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; 23 Hojati, S. F. Polyhedron **2008**, 27, 750–758.
- 24. Yuan, W.; Fearon, J.; Gelb, M. H. J. Org. Chem. 1989, 54, 906-910.
- 25. Nishio, T. J. Org. Chem. **1997**, 62, 1106–1111.
- 26. Katritzky, A. R.; Cai, C.; Suzuki, K.; Singh, S. K. J. Org. Chem. 2004, 69, 811-814.
- 27. Kamila, S.; Biehl, E. R. J. Heterocycl. Chem. **2007**, 44, 407–409.
- 28. van der Eycken, E.; Kappe, C. O. In Microwave-assisted Synthesis of Heterocycles. Topics in Heterocyclic Chemistry; Springer: Heidelberg, 2006; Vol. 1. Seijas, J. A.; Vázquez-Tato, M. P. Chem. Today 2007, 25, 20–24.
 Seijas, J. A.; Vázquez-Tato, M. P.; Carballido-Reboredo, M. R.; Crecente-Campo,
- I.; Romar-López, L. Synlett **2007**, 313–317.
- Seijas, J. A.; Vázquez-Tato, M. P.; González-Bande, C.; Martínez, M. M.; López-31. Pacios, B. Synthesis 2001, 999-1000.
- 32. Seijas, J. A.; Vázquez-Tato, M. P.; Carballido-Reboredo, M. R. J. Org. Chem. 2005. 70. 2855-2858.
- 33. Seijas, J. A.; Vázquez-Tato, M. P.; Martínez, M. M.; Rodríguez-Parga, J. Green Chem. 2002, 390-391.

- 34. Seijas, J. A.; Vázquez-Tato, M. P.; Martínez, M. M. Tetrahedron Lett. 2000, 41, 2215-2217.
- 35. Hafez, T. S.; El-Khoshnieh, Y. O.; Mahran, M. R.; Atta, S. M. S. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 56, 165-171.
- Yamanaka, H.; Yamane, Y.; Mukaiyama, T. Heterocycles 2004, 63, 2813–2826. 36
- 37. Caujolle, R.; Favrot, J. D.; Loiseau, P. R.; Payard, M.; Amarouch, H.; Lazrek, H.; Linas, M. D.; Seguela, J. P.; Loiseau, P. M. Pharm. Acta Helv. 1991, 66, 237-240.
- 38. Kodama, Y.; Ori, M.; Nishio, T. *Helv. Chim. Acta* **2005**, 88, 187–193.
- Thewalt, K.; Renckhoff, G. Fette, Seifen, Anstrichmittel 1968, 70, 648-653; CAN 39 71: 30427.
- 40. 2-Alkyl-2-thiazolines (**5k-m**) upon standing in CDCl₃ on the NMR tube experimented a cleavage of the thiazoline ring rendering the corresponding 2-ethanothiol amides. This phenomenon was not observed with 2-aryl-2thiazolines
- 41. Wenkert, E.; Han, A. Heterocycles 1990, 30, 929-937.
- 42. Sharma, S. D.; Mehra, U.; Kaur, S. Indian J. Chem., Sect. B 1984, 23, 857-859.
- 43. Higuchi, S.; Takeuchi, Y.; Ikeda, K. Jpn. Pat. JP 2004230612, 2004; Chem. Abstr. CAN 141: 197411.
- Nicolaou, K. C.; Hao, J.; Reddy, M. V.; Rao, P. B.; Rassias, G.; Snyder, S. A.; Huang, X.; Chen, D. Y. K.; Brenzovich, W. E.; Giuseppone, N.; Giannakakou, P.; O'Brate, 44 A. J. Am. Chem. Soc. 2004, 126, 12897-12906.
- 45. Pedersen, U.; El-Khrisy, E. E. A. M.; Shabana, R.; Lawesson, S. O. Sulfur Lett. 1985, 3. 71-81.
- 46. Rogero, J.; Metzger, J. Bull. Soc. Chim. Fr. 1963, 11, 2533-2534.
- 47. Deng, S.-L.; Chen, R.-Y. Phosphorus, Sulfur Silicon Relat. Elem. 2003, 178, 211–220.